In Vivo Identification and Regulating Niche of Mesenchymal Stem Cells

Hu Zhao DDS, MS, PhD
Research Assistant Professor
Center for Craniofacial Molecular Biology
Herman Ostrow School of Dentistry,
University of Southern California
Purposes

• Techniques for studying stem cells in vivo.
 ---Label retaining analysis
 ---Lineage tracing analysis
 ---Inducible genetic system (CreERT, tetO)
 ---Reporter strain (LacZ reporter, GFP reporter)

• Fundamental concepts for stem cell study
 niche, self-maintenance, quiescence, transit amplifying cells, multipotential, hedgehog signaling,

• How to design experiments and how to publish on high level journals.
• Part 1. The neurovascular bundle provides a niche for incisor MSCs
• Part 2. The suture provides a niche for MSCs of craniofacial bones.
Definition of MSCs

• “First, MSC must be plastic-adherent when maintained in standard culture conditions. “
• “Second, MSC must express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules. “
• “Third, MSC must differentiate to osteoblasts, adipocytes and chondroblasts in vitro.”

Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006 8(4) 315-317
Fundamental questions for MSCs

• What are the in vivo identity and physiological functions of MSCs?

• What is the regulating niche for the MSCs?
Hypothesis

• MSCs are regulated by various types of niches.
• Gli1 is a marker for MSCs of various mesenchymal organs.
• Classical MSC markers do not define the most primitive MSC population in vivo.
Part 1. The neurovascular bundle provides a niche for incisor MSCs

08/2011—10/2013
Mouse incisor is an excellent model for studying MSC

All mesenchymal cells in incisor turn over within a month
H2BGFP label retaining analysis based on the slow cycling property of stem cells

- **Wnt1-Cre; tTAflox/+; tetO-H2BGFP**

```
W
Cre-mediated
Tissue-specific

T
Dox regulation
Tet-Off

H
Label retaining
reporter

CNC

Chase

Label retaining
cells

Dox +

1mo

Dox free

Dox(+)  chasing

WTH
mouse

E0.5  E8.5  NB  1month  2 month, harvest
```
Label retaining cells of the incisor mesenchyme surround the neurovascular bundle (NVB)

Wnt1-Cre; tTA flox; tetO H2BGFP
H2BGFP based label retaining analysis

αSMA — artery
CD31 — pan-vasculature
β3-tubulin — nerve
H2BGFP — label retaining cells
LRCs are negative for classical MSC markers
Gli1+ cells within the incisor are localized surrounding the NVB centered on the arteries and nerves

Gli1-LacZ mouse incisor
Gli1-LacZ mouse incisor

Incisor cross sections
Gli1-CreERT;ZsGreen$$^{\text{flox}}$$ lineage tracing analysis

- **24 hours**
- **1 week**
- **2 weeks**
- **4 weeks**

Gli1-CE

ZsGreen
Gli1+ cells are quiescent

- Gli1-LacZ; Wnt1-Cre; tTA^{flox}; tetO-H2BGFP chased for 1 month, then double staining with betaGal+H2BGFP

Almost all Gli1+ cells are LRCs, but not all LRCs are Gli1+
The nerve provides Shh
Denervation significantly reduces Gli1 activity
Denervation disrupts incisor mesenchyme homeostasis

One month after denervation
The neurovascular bundle centered around the nerves and arteries provides a niche for dental mesenchymal stem cells.
“ALL MSCs are Pericytes”
Majority of Gli1+ cells do not express classical MSC markers.

NG2+ cells express classical MSC markers and they are pericytes.
Incisor MSCs are typical MSCs in vitro
Gli1+ cells give rise to nearly the entire MSC population on the culture dish.
Molars lack Gli1+ cells but have NG2+ cells that contribute to repair.
Part 1. Summary

- Incisor MSCs are peri-arteriole cells regulated by accompanying sensory nerves.

- Pericytes labeled with classical MSC markers are an MSC sub-population derived from more primitive Gli1+ cells and function mainly in injury repair but not homeostasis.

- Mouse molars do not contain Gli1+ MSC population, but only NG2+ pericytes population.
Summary

• MSCs are regulated by various types of niches.
• Gli1 is a universal marker for MSCs of various mesenchymal organs.
• Classical MSC markers do not define the most primitive MSC population in vivo.
Purposes

• Techniques for studying stem cells in vivo.
 --- Label retaining analysis
 --- Lineage tracing analysis
 --- Inducible genetic system (CreERT, tetO)
 --- Reporter strain (LacZ reporter, GFP reporter)

• Fundamental concepts for stem cell study
 niche, self-maintenance, quiescence, transit amplifying cells, multipotential, hedgehog signaling,

• How to design experiments and how to publish on high level journals.
Thank you